8 research outputs found

    Modelling stakeholder perceptions to assess Green Infrastructures potential in agriculture through fuzzy logic: A tool for participatory governance

    Get PDF
    Abstract Solutions like Green Infrastructures can restore and maintain key regulative ecosystem services capable of mitigating disaster risk and contributing to climate change adaptation. Given the vulnerabilities that affect agriculture and its role in national economies, GI can play an important role in managing trade-offs between conflicting ecosystem services. However, their use is still lagging behind, and socio-economic dynamics in their uptake in the agricultural sector are partially disregarded. The uncertainty involved in the modelling of ecological processes can be reduced through the use of participatory processes and the involvement of relevant stakeholders to sustain decision-making processes. This article intends to assess stakeholders' perceptions on the implementation of Green Infrastructures in agriculture by capturing critical barriers and facilitators. The implementation of such Green Infrastructures policies is associated to different climate change trends in order to understand the effect of different scenarios on rural development. The study uses fuzzy logic to elicit the stakeholders' needs. The key results show that when there is uncertainty in the state of climate change trends, it is always more efficient to adopt progressive policies investing in the development and diffusion of Green Infrastructures

    Monitoring environmental and climate goals for European agriculture: User perspectives on the optimization of the Copernicus evolution offer

    Get PDF
    Abstract A vicious cycle exists between agricultural production and climate change, where agriculture is both a driver and a victim of the changing climate. While new and ambitious environmental and climate change-oriented goals are being introduced in Europe, the monitoring of these objectives is often jeopardized by a lack of technological means and a reliance on heavy administrative procedures. In particular, remote sensing technologies have the potential to significantly improve the monitoring of such goals but the characteristics of such missions should take into consideration the needs of users to guarantee return on investments and effective policy implementation. This study aims at identifying gaps in the current offer of Copernicus products for the monitoring of the agricultural sector through the elicitation of stakeholder requirements. The methodology is applied to the case study of Italy while the approach is scalable at European level. The elicitation process associates user needs to the European and national legislative framework to create a policy-oriented demand of Copernicus Earth Observation services. Results show the limitations faced by environmental managers in relation to the use of Remote Sensing technologies and the shortcomings associated with a purely technology driven approach to the development of satellite missions. Through the introduction of this flexible and user centred approach instead, this paper provides a clear overview of agro-environmental user requirements and represents the basis for the definition of an integrated agricultural service

    Sentinel-2 Data and Unmanned Aerial System Products to Support Crop and Bare Soil Monitoring: Methodology Based on a Statistical Comparison between Remote Sensing Data with Identical Spectral Bands

    Get PDF
    The growing need for sustainable management approaches of crops and bare soils requires measurements at a multiple scale (space and time) field system level, which have become increasingly accurate. In this context, proximal and satellite remote sensing data cooperation seems good practice for the present and future. The primary purpose of this work is the development of a sound protocol based on a statistical comparison between Copernicus Sentinel-2 MIS satellite data and a multispectral sensor mounted on an Unmanned Aerial Vehicle (UAV), featuring spectral deployment identical to Sentinel-2. The experimental dataset, based on simultaneously acquired proximal and Sentinel-2 data, concerns an agricultural field in Pisa (Tuscany), cultivated with corn. To understand how the two systems, comparable but quite different in terms of spatial resolution and atmosphere impacts, can effectively cooperate to create a value-added product, statistical tests were applied on bands and the derived Vegetation and Soil index. Overall, as expected, due to the mentioned impacts, the outcomes show a heterogeneous behavior with a difference between the coincident bands as well for the derived indices, modulated in the same manner by the phenological status (e.g., during the canopy developments) or by vegetation absence. Instead, similar behavior between two sensors occurred during the maturity phase of crop plants

    Non-Parametric Statistical Approaches for Leaf Area Index Estimation from Sentinel-2 Data: A Multi-Crop Assessment

    Get PDF
    The leaf area index (LAI) is a key biophysical variable for agroecosystem monitoring, as well as a relevant state variable in crop modelling. For this reason, temporal and spatial determination of LAI are required to improve the understanding of several land surface processes related to vegetation dynamics and crop growth. Despite the large number of retrieved LAI products and the efforts to develop new and updated algorithms for LAI estimation, the available products are not yet capable of capturing site-specific variability, as requested in many agricultural applications. The objective of this study was to evaluate the potential of non-parametric approaches for multi-temporal LAI retrieval by Sentinel-2 multispectral data, in comparison with a VI-based parametric approach. For this purpose, we built a large database combining a multispectral satellite data set and ground LAI measurements collected over two growing seasons (2018 and 2019), including three crops (i.e., winter wheat, maize, and alfalfa) characterized by different growing cycles and canopy structures, and considering different agronomic conditions (i.e., at three farms in three different sites). The accuracy of parametric and non-parametric methods for LAI estimation was assessed by cross-validation (CV) at both the pixel and field levels over mixed-crop (MC) and crop-specific (CS) data sets. Overall, the non-parametric approach showed a higher accuracy of prediction at pixel level than parametric methods, and it was also observed that Gaussian Process Regression (GPR) did not provide any significant difference (p-value > 0.05) between the predicted values of LAI in the MC and CS data sets, regardless of the crop. Indeed, GPR at the field level showed a cross-validated coefficient of determination (R2CV) higher than 0.80 for all three crops

    Agreement Index for Burned Area Mapping: Integration of Multiple Spectral Indices Using Sentinel-2 Satellite Images

    No full text
    Identifying fire-affected areas is of key importance to support post-fire management strategies and account for the environmental impact of fires. The availability of high spatial and temporal resolution optical satellite data enables the development of procedures for detailed and prompt post-fire mapping. This study proposes a novel approach for integrating multiple spectral indices to generate more accurate burned area maps by exploiting Sentinel-2 images. This approach aims to develop a procedure to combine multiple spectral indices using an adaptive thresholding method and proposes an agreement index to map the burned areas by optimizing omission and commission errors. The approach has been tested for the burned area classification of four study areas in Italy. The proposed agreement index combines multiple spectral indices to select the actual burned pixels, to balance the omission and commission errors, and to optimize the overall accuracy. The results showed the spectral indices singularly performed differently in the four study areas and that high levels of commission errors were achieved, especially for wildfires which occurred during the fall season (up to 0.93) Furthermore, the agreement index showed a good level of accuracy (minimum 0.65, maximum 0.96) for all the study areas, improving the performance compared to assessing the indices individually. This suggests the possibility of testing the methodology on a large set of wildfire cases in different environmental conditions to support the decision-making process. Exploiting the high resolution of optical satellite data, this work contributes to improving the production of detailed burned area maps, which could be integrated into operational services based on the use of Earth Observation products for burned area mapping to support the decision-making process

    An Interaction Methodology to Collect and Assess User-Driven Requirements to Define Potential Opportunities of Future Hyperspectral Imaging Sentinel Mission

    No full text
    Evolution in the Copernicus Space Component is foreseen in the mid-2020s to meet priority user needs not addressed by the existing infrastructure, and/or to reinforce existing services. In this context, the European Commission is intending to evaluate the overall potential utility of a complementary Copernicus hyperspectral mission to be added to the Copernicus Sentinels fleet. Hyperspectral imaging is a powerful remote sensing technology that, allowing the characterization and quantification of Earth surface materials, has the potential to deliver significant enhancements in quantitative value-added products. This study aims to illustrate the interaction methodology that was set up to collect and assess user-driven requirements in different thematic areas to demonstrate the potential benefit of a future Copernicus hyperspectral mission. Therefore, an ad hoc interaction matrix was circulated among several user communities to gather preferences about hyperspectral-based products and services. The results show how the involvement of several user communities strengthens the identification of these user requirements. Moreover, the requirement evaluation is used to identify potential opportunities of hyperspectral imaging in addressing operational needs associated with policy obligations at European, national, and local levels. The frequency distribution of spectral range classes and spatial and temporal resolutions are also derived from the preference expressed by the user communities in each thematic area investigated
    corecore